Not all sub-Riemannian minimizing geodesics are smooth
Résumé
A longstanding open question in sub-Riemannian geometry is the following: are sub-Riemannian length minimizers smooth? We give a negative answer to this question, exhibiting an example of a C 2 but not C 3 length-minimizer of a real-analytic (even polynomial) sub-Riemannian structure.
Origine | Fichiers produits par l'(les) auteur(s) |
---|---|
Licence |